Algorithm
-
Initialize Queue:
- Create a class for the Queue.
- Declare instance variables: maxSize, queueArray[], front, rear, size.
-
Enqueue (Insert):
- Check for overflow.
- Increment rear.
- Set queueArray[rear] to the new element.
- Increment size.
-
Dequeue (Remove):
- Check for underflow.
- Get the element at the front (queueArray[front]).
- Increment front.
- Decrement size.
-
Front (Peek):
- Return queueArray[front].
-
Check if Queue is Empty:
- Return (size == 0).
-
Check if Queue is Full:
- Return (size == maxSize).
These steps provide a high-level algorithm for the basic operations of a queue data structure in Java.
Code Examples
#1 Code Example- Java program to implement Stack
Code -
Java Programming
public class Queue {
int SIZE = 5;
int items[] = new int[SIZE];
int front, rear;
Queue() {
front = -1;
rear = -1;
}
// check if the queue is full
boolean isFull() {
if (front == 0 && rear == SIZE - 1) {
return true;
}
return false;
}
// check if the queue is empty
boolean isEmpty() {
if (front == -1)
return true;
else
return false;
}
// insert elements to the queue
void enQueue(int element) {
// if queue is full
if (isFull()) {
System.out.println("Queue is full");
}
else {
if (front == -1) {
// mark front denote first element of queue
front = 0;
}
rear++;
// insert element at the rear
items[rear] = element;
System.out.println("Insert " + element);
}
}
// delete element from the queue
int deQueue() {
int element;
// if queue is empty
if (isEmpty()) {
System.out.println("Queue is empty");
return (-1);
}
else {
// remove element from the front of queue
element = items[front];
// if the queue has only one element
if (front >= rear) {
front = -1;
rear = -1;
}
else {
// mark next element as the front
front++;
}
System.out.println( element + " Deleted");
return (element);
}
}
// display element of the queue
void display() {
int i;
if (isEmpty()) {
System.out.println("Empty Queue");
}
else {
// display the front of the queue
System.out.println("\nFront index-> " + front);
// display element of the queue
System.out.println("Items -> ");
for (i = front; i < = rear; i++)
System.out.print(items[i] + " ");
// display the rear of the queue
System.out.println("\nRear index-> " + rear);
}
}
public static void main(String[] args) {
// create an object of Queue class
Queue q = new Queue();
// try to delete element from the queue
// currently queue is empty
// so deletion is not possible
q.deQueue();
// insert elements to the queue
for(int i = 1; i < 6; i ++) {
q.enQueue(i);
}
// 6th element can't be added to queue because queue is full
q.enQueue(6);
q.display();
// deQueue removes element entered first i.e. 1
q.deQueue();
// Now we have just 4 elements
q.display();
}
}
Copy The Code &
Try With Live Editor
Output
Queue is empty
Insert 1
Insert 2
Insert 3
Insert 4
Insert 5
Queue is full
Front index-> 0
Items ->
1 2 3 4 5
Rear index-> 4
1 Deleted
Front index-> 1
Items ->
2 3 4 5
Rear index-> 4
Insert 1
Insert 2
Insert 3
Insert 4
Insert 5
Queue is full
Front index-> 0
Items ->
1 2 3 4 5
Rear index-> 4
1 Deleted
Front index-> 1
Items ->
2 3 4 5
Rear index-> 4
#2 Code Example- Implement stack using Queue interface
Code -
Java Programming
import java.util.Queue;
import java.util.LinkedList;
class Main {
public static void main(String[] args) {
// Creating Queue using the LinkedList class
Queue < Integer> numbers = new LinkedList<>();
// enqueue
// insert element at the rear of the queue
numbers.offer(1);
numbers.offer(2);
numbers.offer(3);
System.out.println("Queue: " + numbers);
// dequeue
// delete element from the front of the queue
int removedNumber = numbers.poll();
System.out.println("Removed Element: " + removedNumber);
System.out.println("Queue after deletion: " + numbers);
}
}
Copy The Code &
Try With Live Editor
Output
Queue: [1, 2, 3]
Removed Element: 1
Queue after deletion: [2, 3]
Removed Element: 1
Queue after deletion: [2, 3]
Demonstration
Java Programing Example to Implement the queue data structure-DevsEnv