GDCOFTI - Greatest Common Divisor Of Three Integers

It is said that the greatest common divisor (GCD) of two or more whole integers, is the largest integer that divides them without leaving residue. Euclid's algorithm is famous for allowing to find the GCD between two integers. This challenge asks you, you find the GCD between three integers.

Challenge

The entry consists of 3 whole nonnegative integers (< 264), one per line and the output will be the GCD of the 3 integers.

Example of input

```426
132
120```

Example of output for this input

`6`

Example of input:

```100
60
120```

Example of output for this input

`20`

Example of input:

```4
8
12```

Example of output for this input

`4`

Code Examples

#1 Code Example with Python Programming

```Code - Python Programming```

``````def gcd(A, B):
if A == 0:
return B
return gcd(B % A, A)
result = 0
for i in range(3):
result = gcd(result, int(input()))
print(result)``````
Copy The Code &

Input

cmd
426
132
120

Output

cmd
6

#2 Code Example with C++ Programming

```Code - C++ Programming```

``````#include <cstdio>

#define max(a, b) (a > b ? a : b)
#define min(a, b) (a < b ? a : b)
typedef long long LL;

LL gcd(LL a, LL b)
{
if(a == 0 || b == 0)
return (a + b);
else
return gcd(max(a, b)%min(a, b), min(a, b));
}

int main()
{
LL a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);

printf("%lld\n", gcd(gcd(a, b), c) );
return 0;
}``````
Copy The Code &

Input

cmd
426
132
120

Output

cmd
6