Algorithm


problem link- https://www.spoj.com/problems/QTREE2/

QTREE2 - Query on a tree II

 

You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3 ...N-1. Each edge has an integer value assigned to it, representing its length.

We will ask you to perform some instructions of the following form:

  • DIST a b : ask for the distance between node a and node b
    or
  • KTH a b k : ask for the k-th node on the path from node a to node b

Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2

Path from node 4 to node 6 is 4 → 2 → 1 → 3 → 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

Input

The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000)
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c <= 100000)
  • The next lines contain instructions "DIST a b" or "KTH a b k"
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "DIST" or "KTH" operation, write one integer representing its result.

Print one blank line after each test.

Example

Input:
1

6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE

Output:
5
3

 

Code Examples

#1 Code Example with C++ Programming

Code - C++ Programming

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
 
#define MOD                 1000000007LL
#define EPS                 1e-9
#define io                  ios_base::sync_with_stdio(false);cin.tie(NULL);
#define M_PI                3.14159265358979323846

template <typename T> T gcd(T a, T b){return (b==0)?a:gcd(b,a%b);}
template <typename T> T lcm(T a, T b){return a*(b/gcd(a,b));}
template <typename T> T mod_exp(T b, T p, T m){T x = 1;while(p){if(p&1)x=(x*b)%m;b=(b*b)%m;p=p>>1;}return x;}
template <typename T> T invFermat(T a, T p){return mod_exp(a, p-2, p);}
template <typename T> T exp(T b, T p){T x = 1;while(p){if(p&1)x=(x*b);b=(b*b);p=p>>1;}return x;}

const int MAXN = 1e4+5;
const int LG = log2(MAXN) + 1;

int n;
vector<pair<int, int> > adj[MAXN];
int level[MAXN], par[MAXN][LG], cost[MAXN];

void dfs(int u, int parent, int c){
	cost[u] = cost[parent] + c;
	level[u] = level[parent] + 1;
	par[u][0] = parent;
	for(auto v : adj[u]){
		if(v.first == parent)	continue;
		dfs(v.first, u, v.second);
	}
}

int lca(int u, int v){
	if(level[u] < level[v])	swap(u, v);
	int log = log2(level[u]);
	for(int i = log; i >= 0; i--)
		if(level[u]-level[v] >= (1 << i))
			u = par[u][i];
	if(u == v)
		return u;
	for(int i = log; i >= 0; i--){
		if(par[u][i] != -1 && par[u][i] != par[v][i]){
			u = par[u][i];
			v = par[v][i];
		}
	}
	return par[u][0];
}

int kth(int n, int k){
	int log = log2(level[n]);
	for(int i = 0; i <= log; i++){
		if(k & (1 << i))
			n = par[n][i];
	}
	return n;
}

int main(){
    int t;
    scanf("%d", &t);
    while(t--){
	    scanf("%d", &n);
	    for(int i = 1;i <= n; i++){
	    	adj[i].clear();
	    	level[i] = 0;
	    }
	    for(int i = 0;i < n-1; i++){
	    	int a, b, c;
	    	scanf("%d%d%d", &a, &b, &c);
	    	adj[a].push_back({b, c});
	    	adj[b].push_back({a, c});
	    }
	    memset(par, -1, sizeof par);
	    level[0] = -1;
	    dfs(1, 0, 0);
	    for(int j = 1; j < LG; j++){
	    	for(int i = 1; i <= n; i++){
	    		if(par[i][j-1] != -1)
	    			par[i][j] = par[par[i][j-1]][j-1];
	    	}
	    }
	    char query[8];
	    while(scanf("%s", query) == 1){
	    	if(query[1] == 'O')	break;
	    	int a, b;
	    	scanf("%d%d", &a, &b);
	    	if(query[1] == 'I'){
	    		int lc = lca(a, b);
	    		int ans = cost[a] + cost[b] - 2*cost[lc];
	    		printf("%d\n", ans);
	    	}else{
	    		int k;
	    		scanf("%d", &k);
	    		int lc = lca(a, b);
	    		int left = level[a]-level[lc]+1;
	    		if(k <= left)
	    			printf("%d\n", kth(a, k-1));
	    		else
	    			printf("%d\n", kth(b, (level[b]-level[lc])-(k-left)));
	    	}
	    }
	    printf("\n");
	}
    return 0;
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
1
6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE

Output

x
+
cmd
5
3
Advertisements

Demonstration


SPOJ Solution-Query on a tree II-Solution in C, C++, Java, Python

Previous
SPOJ Solution - Test Life, the Universe, and Everything - Solution in C, C++, Java, Python