## INVCNT - Inversion Count

Let A[0...n - 1] be an array of n distinct positive integers. If i < j and A[i] > A[j] then the pair (i, j) is called an inversion of A. Given n and an array A your task is to find the number of inversions of A.

### Input

The first line contains t, the number of testcases followed by a blank space. Each of the t tests start with a number n (n <= 200000). Then n + 1 lines follow. In the ith line a number A[i - 1] is given (A[i - 1] <= 10^7). The (n + 1)th line is a blank space.

### Output

For every test output one line giving the number of inversions of A.

### Example

```Input:
2

3
3
1
2

5
2
3
8
6
1

Output:
2
5```

## Code Examples

### #1 Code Example with C++ Programming

```Code - C++ Programming```

``````#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int a[200001];
int te[200001];
unsigned long long merge(int arr[],int temp[],int left,int mid,int right)
{
int i=left;
int j=mid;
int k=left;
unsigned long long int icount=0;
while((i<=mid-1) && (j<=right))
{
if(arr[i]<=arr[j])
temp[k++]=arr[i++];
else
{
temp[k++]=arr[j++];
icount+=(mid-i);
}
}
while(i<=mid-1)
temp[k++]=arr[i++];
while(j<=right)
temp[k++]=arr[j++];
for(int i=left;i<=right;i++)
arr[i]=temp[i];
return icount;
}
unsigned long long int mergesort(int arr[],int temp[],int left,int right)
{
unsigned long long int i=0;
if(right>left){
int mid=(left+right)/2;
i=mergesort(arr,temp,left,mid);
i+=mergesort(arr,temp,mid+1,right);
i+=merge(arr,temp,left,mid+1,right);
}
return i;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
printf("%llu\n",mergesort(a,te,0,n-1));
}
return 0;
}``````
Copy The Code &

Input

cmd
2
3
3
1
2
5
2
3
8
6
1

Output

cmd
2
5