Algorithm
Problem Name: Python -
In this HackerRank Functions in PYTHON problem solution,
The mean tool computes the arithmetic mean along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.]
print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5]
print numpy.mean(my_array, axis = None) #Output : 2.5
print numpy.mean(my_array) #Output : 2.5
By default, the axis is None
. Therefore, it computes the mean of the flattened array.
The var tool computes the arithmetic variance along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.var(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.var(my_array, axis = 1) #Output : [ 0.25 0.25]
print numpy.var(my_array, axis = None) #Output : 1.25
print numpy.var(my_array) #Output : 1.25
By default, the axis is None
. Therefore, it computes the variance of the flattened array.
The std tool computes the arithmetic standard deviation along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.std(my_array, axis = 0) #Output : [ 1. 1.]
print numpy.std(my_array, axis = 1) #Output : [ 0.5 0.5]
print numpy.std(my_array, axis = None) #Output : 1.11803398875
print numpy.std(my_array) #Output : 1.11803398875
By default, the axis is None
. Therefore, it computes the standard deviation of the flattened array.
Task
You are given a 2-D array of size N * M.
Your task is to find:
- The mean along axis 1.
- The var along axis 0
- The std along axis None
Input Format
The first line contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format
First, print the mean.
Second, print the var.
Third, print the std.
Sample Input
2 2
1 2
3 4
Sample Output
[ 1.5 3.5]
[ 1. 1.]
1.11803398875
Code Examples
#1 Code Example with Python Programming
Code -
Python Programming
import numpy
space, _ = map(int, input().split(' '))
arr = []
for i in range(space):
line = list(map(int, input().split(' ')))
arr.append(line)
arr = numpy.array(arr)
print(numpy.mean(arr, axis=1))
print(numpy.var(arr, axis=0))
print(round(numpy.std(arr, axis=None),11))
Copy The Code &
Try With Live Editor