Algorithm


Problem Name: Data Structures - Square-Ten Tree

Problem Link: https://www.hackerrank.com/challenges/find-maximum-index-product/problem?isFullScreen=true

In this HackerRank in Data Structures -Square-Ten Tree solutions

The square-ten tree decomposition of an array is defined as follows:

  • The lowest (0**th) level of the square-ten tree consists of single array elements in their natural order.
  • The k**th level (starting from 1 ) of the square-ten tree consists of subsequent array subsegments of length 10**2k-1 in their natural order. Thus, the 1st level contains subsegments of length 10**2**1-1 = 10 the 2nd level contains subsegments of length 10**2**2-i = 100 the 3rd level contains subsegments of length 10**2**3-1 = 10000 etc.

The image below depicts the bottom-left corner (i.e., the first 128 array elements) of the table representing a square-ten tree. The levels are numbered from bottom to top:

Input Format

The first line contains a single integer denoting L.

The second line contains a single integer denoting R .

Constraints

  • 1 <= L <= R <= 10**10**6
  • The numbers in input do not contain leading zeroes.

Sample Input 0

1
10

Sample Output 0

1
1 1

Explanation 0

Segment [1,10] belongs to level 1 of the square-ten tree.

 

 

 

 

Code Examples

#1 Code Example with C Programming

Code - C Programming


#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX(a, b) ((a) > (b) ? (a) : (b))

#define DIGIT(a) ((a) - '0')
#define  CHAR(a) ((a) + '0')

char L[1000002];
char R[1000002];
char amount[1000002];

int main()
{
    int    lvls[42];
    char * amts[42] = {0};
    int    lenL, lenR, diff1, left, right, pos, groupsz, level, max, rmd, carry, i, n = 0;

    scanf("%s", L);
    scanf("%s", R);

    lenL = strlen(L);
    lenR = strlen(R);

    if (lenL  <  lenR)
    {
        memmove(L + lenR - lenL, L, lenL + 1);
        memset(L, '0', lenR - lenL);
        lenL = lenR;
    }

    for (i = 0; i  <  lenL; ++i)
        if (L[i] != R[i]) break;
    diff1 = i;

    if (diff1 >= lenL-1)
    {
        printf("1\n0 %d\n", 1 + R[lenR-1] - L[lenL-1]);
        return 0;
    }

    level = 0;

    if (L[lenL-1] == '0')
    {
        L[lenL-1] = '1';
        lvls[n] = level;
        amts[n] = malloc(1 + 1);
        if (amts[n] == NULL)
            return 1;
        strcpy(amts[n], "1");
        n++;
    }
    else if (L[lenL-1] != '1')
    {
        lvls[n] = level;
        amts[n] = malloc(1 + 1);
        if (amts[n] == NULL)
            return 1;
        amts[n][0] = CHAR(11 - DIGIT(L[lenL-1]));
        amts[n][1] = '\0';
        n++;
        for (pos = lenL-2; L[pos] == '9'; --pos)
            ;
        L[pos] += 1;
        for (i = pos+1; i  <  lenL; ++i)
            L[i] = '0';
    }

    groupsz = 1;
    left = right = lenL-2;

    while (diff1  <  left)
    {
        level += 1;
        rmd = 0;
        max = '0';
        for (i = right; i >= left; --i)
        {
            if (L[i] > max) max = L[i];
            rmd -= DIGIT(L[i]);
            if (rmd  <  0)
            {
                amount[i] = CHAR(rmd + 10);
                rmd = -1;
            }
            else
            {
                amount[i] = CHAR(rmd);
                rmd = 0;
            }
        }

        if (max > '0')
        {
            for (pos = left-1; L[pos] == '9'; --pos)
                ;
            L[pos] += 1;
            for (i = pos+1; i  < = right; ++i)
                L[i] = '0';

            lvls[n] = level;
            amts[n] = malloc(groupsz + 1);
            if (amts[n] == NULL)
                return 1;
            memcpy(amts[n], &amount[left], groupsz);
            amts[n][groupsz] = '\0';
            n++;
        }

        right -= groupsz;
        groupsz *= 2;
        left = MAX(0, right - groupsz + 1);
    }

    /* take truncated/diff group */
    level += 1;
    rmd = 0;
    max = '0';
    for (i = right; i >= left; --i)
    {
        rmd += R[i] - L[i];
        if (rmd  <  0)
        {
            amount[i] = CHAR(rmd + 10);
            rmd = -1;
        }
        else
        {
            amount[i] = CHAR(rmd);
            rmd = 0;
        }

        if (amount[i] > max) max = amount[i];
    }

    if (max > '0')
    {
        lvls[n] = level;
        amts[n] = malloc(right + 1 - left + 1);
        if (amts[n] == NULL)
            return 1;
        memcpy(amts[n], &amount[left], right + 1 - left);
        amts[n][right+1-left] = '\0';
        n++;
    }

    left = right + 1;
    groupsz /= 2;
    right = left + groupsz - 1;

    while (left  <  lenR-1)
    {
        level -= 1;
        max = '0';
        for (i = left; i  < = right; ++i)
            if (R[i] > '0') max = R[i];

        if (max > '0')
        {
            if (lvls[n-1] == level)
            {
                /* add amount to amts[n-1] */
                carry = 0;
                for (i = right; i >= left; --i)
                {
                    carry += DIGIT(R[i]) + DIGIT(amts[n-1][i-left]);
                    if (carry >= 10)
                    {
                        amount[i] = CHAR(carry - 10);
                        carry = 1;
                    }
                    else
                    {
                        amount[i] = CHAR(carry);
                        carry = 0;
                    }
                }
                if (carry)
                {
                    amount[i] = '1';
                    free(amts[n-1]);
                    amts[n-1] = malloc(1 + groupsz + 1);
                    if (amts[n-1] == NULL)
                        return 1;
                    memcpy(amts[n-1], &amount[i], 1 + groupsz);
                    amts[n-1][1+groupsz] = '\0';
                }
                else
                {
                    memcpy(amts[n-1], &amount[left], groupsz);
                }
            }
            else
            {
                lvls[n] = level;
                amts[n] = malloc(groupsz + 1);
                if (amts[n] == NULL)
                    return 1;
                memcpy(amts[n], &R[left], groupsz);
                amts[n][groupsz] = '\0';
                n++;
            }
        }

        left = right + 1;
        groupsz /= 2;
        right = left + groupsz - 1;
    }

    if (R[lenR-1] > '0')
    {
        level = 0;
        if (lvls[n-1] == level)
        {
            /* add amount to amts[n-1] */
            carry = DIGIT(R[lenR-1]) + DIGIT(amts[n-1][0]);
            if (carry >= 10)
            {
                free(amts[n-1]);
                amts[n-1] = malloc(2 + 1);
                if (amts[n-1] == NULL)
                    return 1;
                sprintf(amts[n-1], "%d", carry);
            }
            else
            {
                amts[n-1][0] = CHAR(carry);
            }
        }
        else
        {
            lvls[n] = level;
            amts[n] = malloc(1 + 1);
            if (amts[n] == NULL)
                return 1;
            amts[n][0] = R[lenR-1];
            amts[n][1] = '\0';
            n++;
        }
    }

    printf("%d\n", n);
    for (i = 0; i  <  n; ++i)
    {
        for (left = 0; amts[i][left] == '0'; ++left)
            ;
        printf("%d %s\n", lvls[i], &amts[i][left]);
    }

    return 0;
}
Copy The Code & Try With Live Editor

#2 Code Example with C++ Programming

Code - C++ Programming


#include <cmath>
#include <cstdio>
#include  < vector>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stdlib.h>
#include <sstream>
using namespace std;

struct Block {
    unsigned int level;
    string count;
};

void pushBlocks(vector < Block> &blocks, unsigned level, const string& s) {
    auto it = s.rbegin();
    while (*it == '0') it++;
    if (it != s.rend()) blocks.push_back({level, string(it, s.rend())});
}

int main() {
    string l, r;
    vector < Block> blocks;
    cin >> l >> r;
    
    if (l == r) {
        blocks.push_back({ 0, "1" });
    }
    else {
        // skip matching start
        if (l.length() == r.length()) {
            int i = 0;
            while (l[i] == r[i]) i++;
            l = l.substr(i);
            r = r.substr(i);
        }
        // reverse strings for easier indexing from lowest digit
        reverse(l.begin(), l.end());
        reverse(r.begin(), r.end());
    
        const int llen = l.length();
        const int rlen = r.length();

        int blockEnd = 1;
        unsigned int level = 0;
        int carry = -1;
        stringstream output;
        
        // blocks needed raise 'l' to next blockEnd
        int i = 0;
        for (; i  <  rlen; i++) {
            if (i >= blockEnd) {
                pushBlocks(blocks, level, output.str());
                level++;
                blockEnd *= 2;
                output.str("");
            }
            if (blockEnd >= rlen) {
                break;
            }
            int x = i  <  llen ? l[i] - '0' : 0;
            int diff = (10 - x - carry) % 10;
            carry = x + carry + diff >= 10;
            output << (char)('0' + diff);
        }
        // top block (simply 'r' - 'l')
        for (int j = i; j  <  rlen; j++) {
            int x = j < llen ? l[j] - '0' : 0;
            int y = r[j] - '0';
            int diff = (10 + y - x - carry) % 10;
            carry = y - x - carry  <  0;
            output << (char)('0' + diff);
        }
        pushBlocks(blocks, level, output.str());
        level--;
        blockEnd /= 2;
        output.str("");
        
        // add remaining 'r' blocks
        while (blockEnd > 1) {
            pushBlocks(blocks, level, r.substr(blockEnd / 2, blockEnd / 2));
            level--;
            blockEnd /= 2;
        }
        pushBlocks(blocks, level, r.substr(0, 1));
    }
    
    // print result
    cout << blocks.size() << endl;
    for (auto iter = blocks.begin(); iter != blocks.end(); iter++) {
        cout << iter->level << " " << iter->count << endl;
    }

    return 0;
}
Copy The Code & Try With Live Editor

#3 Code Example with Java Programming

Code - Java Programming


import java.util.Scanner;
import java.util.Arrays;

// I recommend skipping this problem. The problem statement is way too convoluted.
// However, here are some takeaway concepts from this problem:
//   - Implementing a custom BigInt as a byte[]
//   - Implementing log2(int n)
//   - Realizing that our algorithm can process the giant numbers in portions

// - Runtime: O(n + m) where n = # of digits in L, m = # of digits in R (for interval [L,R]).
// - Numbers can literally have millions of digits in this problem. An "int" or "long" is not big enough to store these numbers. Although Java's BigInteger is big enough, it turns out to be too slow for this problem. I wrote a custom "BigInt" class to speed up calculations.
// - To achieve linear runtime, we need an algorithm that splits up these giant numbers into portions and processes them separately. A great way to do this is to split by level, as done below.
// - This was a very difficult problem. You must have both linear runtime and efficient code to pass all testcases.
public class Solution {
    public static void main(String[] args) {
        /* Read and save input */
        Scanner scan = new Scanner(System.in);
        String strL  = new BigInt(scan.next()).subtract(BigInt.ONE).toString(); // subtract 1 since it's [L,R] inclusive
        String strR  = scan.next();
        scan.close();
        
        /* Calculate interval sizes (by just saving # of digits) */
        int [] intervalDigits = new int[log2(strR.length()) + 3]; // The +3 gives us an estimate of the size we need
        for (int k = 0; k  <  intervalDigits.length; k++) {
            intervalDigits[k] = digitsInInterval(k);
        }
        
        /* Initialize variables */
        StringBuilder sb      = new StringBuilder();
        int endL              = strL.length();
        int endR              = strR.length();
        BigInt upperBound     = BigInt.ONE;
        boolean carry         = false;
        boolean lastIteration = false;
        int blockCount        = 0;
        int level             = 0;
        
        /* Calculate counts for increasing segment sizes */
        while (!lastIteration) {
            /* Get portion of each String corresponding to current level */
            int numDigits   = intervalDigits[level + 1] - intervalDigits[level];
            int startL      = Math.max(endL - numDigits, 0);
            int startR      = Math.max(endR - numDigits, 0);
            BigInt numL = (endL == 0) ? BigInt.ZERO : new BigInt(strL.substring(startL, endL));
            if (carry) {
                numL = numL.add(BigInt.ONE);
            }
            
            /* Calculate upper bound */
            if (startR == 0) {
                upperBound = new BigInt(strR.substring(startR, endR));
                lastIteration = true;
            } else {
                upperBound = BigInt.tenToPower(numDigits);
            }
            
            /* If not skipping this level, process it */
            if ((!numL.equals(BigInt.ZERO) && !numL.equals(upperBound)) || startR == 0) {               
                BigInt count = upperBound.subtract(numL);
                carry = true;
                blockCount++;
                sb.append(level + " " + count +  "\n");
            }
            
            /* Update variables for next iteration */
            endL = startL;
            endR = startR;
            level++;
        }
        
        StringBuilder sb2 = new StringBuilder();
        level             = 0;
        endR              = strR.length();
        
        /* Calculate counts for decreasing segment sizes */
        while (true) {
            /* Calculate number of nodes in current level */
            int numDigits = intervalDigits[level + 1] - intervalDigits[level];
            int startR    = Math.max(endR - numDigits, 0);
            if (startR == 0) {
                break;
            }
            BigInt count = new BigInt(strR.substring(startR, endR));
            
            /* If not skipping this level, process it */
            if (!count.equals(BigInt.ZERO)) {
                blockCount++;
                sb2.insert(0, level + " " + count +  "\n");
            }

            /* Update variables for next iteration */
            endR = startR;
            level++;
        }
        
        System.out.println(blockCount + "\n" + sb + sb2);
    }
    
    static int log2(int n) { // assumes positive number
        return 31 - Integer.numberOfLeadingZeros(n);
    }
    
    static int digitsInInterval(int k) {
        if (k == 0) {
            return 1;
        } else {
            return (int) (Math.pow(2, k - 1) + 1);
        }
    }
}

// - Java's BigInteger is not fast enough to pass the testcases. The BigInt I create below is more efficient for this problem.
// - This link has good implementation ideas (Though they store numbers in reverse order):
//   http://iwillgetthatjobatgoogle.tumblr.com/post/32583376161/writing-biginteger-better-than-jdk-one
// - BigInt numbers may be stored with leading 0s
// - BigInt only works with non-negative integers
class BigInt {
    public static final BigInt ZERO = new BigInt("0");
    public static final BigInt ONE  = new BigInt("1");
    
    public final byte[] digits; // will use 8 bits per digit for simplicity, even though 4 bits is enough
    
    /* Constructor */
    public BigInt(String str) {
        digits = new byte[str.length()];
        for (int i = 0; i  <  digits.length; i++) {
            digits[i] = Byte.valueOf(str.substring(i, i + 1));
        }
    }
    
    /* Constructor */
    public BigInt(byte [] digits) {
        this.digits = digits;
    }
    
    public static BigInt tenToPower(int exponent) {
        byte [] digits = new byte[exponent + 1];
        digits[0] = 1;
        return new BigInt(digits);
    }
    
    public BigInt add(BigInt other) {
        byte [] digitsA = digits;
        byte [] digitsB = other.digits;
        
        /* Create new Array to hold answer */
        int newLength = Math.max(digitsA.length, digitsB.length);
        if (!(digitsA[0] == 0 && digitsB[0] == 0)) {
            newLength++;
        }
        byte [] result = new byte[newLength];
        
        /* Do the addition */
        int carry = 0;
        int ptrA = digitsA.length - 1;
        int ptrB = digitsB.length - 1;
        int ptrR = result.length  - 1;
        
        while (ptrA >= 0 || ptrB >= 0 || carry > 0) {
            int sum = carry;
            if (ptrA >= 0) {
                sum += digitsA[ptrA--];
            }
            if (ptrB >= 0) {
                sum += digitsB[ptrB--];
            }
            result[ptrR--] = (byte) (sum % 10);
            carry          = sum / 10;
        }
        return new BigInt(result);
    }
    
    public BigInt subtract(BigInt other) { // assumes "other" is smaller than this BigInt
        byte [] digitsB = other.digits;
        byte [] result  = Arrays.copyOf(digits, digits.length); // copy of "digitsA"
        
        /* Do the subtraction */
        int ptrB = digitsB.length - 1;
        int ptrR = result.length  - 1;
        while (ptrB >= 0 && ptrR >= 0) {
            result[ptrR] -= digitsB[ptrB];
            /* if necessary, do the "borrow" */
            if (result[ptrR]  <  0) {
                result[ptrR] += 10;
                int ptrBorrow = ptrR - 1;
                while (result[ptrBorrow] == 0) {
                    result[ptrBorrow--] = 9;
                }
                result[ptrBorrow]--;
            }
            ptrB--;
            ptrR--;
        }
        return new BigInt(result);
    }
    
    @Override
    public boolean equals(Object other) {
        if (!(other instanceof BigInt)) {
            return false;
        }
        
        byte [] digitsA = digits;
        byte [] digitsB = ((BigInt) other).digits;

        int indexA = 0;
        int indexB = 0;
        
        /* Remove leading 0s */
        while (indexA  <  digitsA.length && digitsA[indexA] == 0) {
            indexA++;
        }
        while (indexB < digitsB.length && digitsB[indexB] == 0) {
            indexB++;
        }
        
        /* If lengths not equal, BigInts aren't equal */
        int lenA = digitsA.length - indexA;
        int lenB = digitsB.length - indexB;
        
        if (lenA != lenB) {
            return false;
        }
        
        /* Check to see if all digits match for the 2 BigInts */
        while (indexA  <  digitsA.length && indexB < digitsB.length) {
            if (digitsA[indexA++] != digitsB[indexB++]) {
                return false;
            }
        }
        return true;
    }
    
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        int i = 0;
        
        /* Skip leading 0s */
        while (i  <  digits.length && digits[i] == 0) {
            i++;
        }
        
        /* Special Case: the BigInt 0 */
        if (i == digits.length) {
            return "0";
        }
        
        /* Create and return String */
        for (  ; i  <  digits.length; i++) {
            sb.append(digits[i]);
        }
        return sb.toString();
    }
}
Copy The Code & Try With Live Editor

#4 Code Example with Python Programming

Code - Python Programming


class Big:
    def __init__(self, v):
        self.value = self.check_zero(v)
        self.size = 5000
        self.size2 = 10 ** self.size

    def modd(self, length, base0=False):
        vv = self.check_zero(self.value[-length:])
        if vv == '':
            if base0:
                return ''
            else:
                return '1' + '0' * length
        return self.check_zero(self.value[-length:])

    def mod_rest(self, length, is_plus):
        vv = self.check_zero(self.value[-length:])

        self.value = self.value[:-length]
        if is_plus:
            if not vv == '':
                self.value = self.plus(self.value, '1')

    def plus(self, value1, value2):
        result = ""
        size = self.size
        size2 = self.size2
        length = (max(len(value1), len(value2)) // size + 1) * size

        value1 = '0' * (length - len(value1)) + value1
        value2 = '0' * (length - len(value2)) + value2
        rest = 0

        for j in range(length, 0, -size):
            v1 = int(value1[j - size: j])
            v2 = int(value2[j - size: j])
            r = v1 + v2 + rest
            if r >= size2:
                rest = 1
                r -= size2
            else:
                rest = 0
            result = '0' * (size - len(str(r))) + str(r) + result

        if rest > 0:
            result = str(rest) + result
        result = self.check_zero(result)

        return result

    def minus(self, value1, value2):
        # value1 - value2, len(value1) >= len(value2)
        result = ""
        size = self.size
        size2 = self.size2
        length = (max(len(value1), len(value2)) // size + 1) * size

        value1 = '0' * (length - len(value1)) + value1
        value2 = '0' * (length - len(value2)) + value2
        rest = 0

        for j in range(length, 0, -size):
            v1 = int(value1[j - size: j])
            v2 = int(value2[j - size: j])
            r = v1 - v2 + rest
            if r < 0:
                rest = -1
                r += size2
            else:
                rest = 0
            result = '0' * (size - len(str(r))) + str(r) + result

        result = self.check_zero(result)

        return result
    def compare(self, length):
        return len(self.value) - length

    def check_zero(self, k):
        # if len(k) == 0:
        #     return k
        strr = ''
        for j in range(len(k)):
            if k[j] == '0':
                continue
            else:
                strr = k[j:]
                break
        return strr


def main(l, r):
    ll = Big(l)
    rr = Big(r)

    indexs = [1, 1]
    results1 = []
    results2 = []
    # print(ll.value, rr.value)
    ll.value = ll.minus(ll.value, '1')
    while True:
        index = indexs[-2]
        if ll.compare(index) <= 0 and rr.compare(index) <= 0:
            results1.append(ll.minus(rr.value, ll.value))
            # print(len(results1) - 1, ll.value, rr.value, results1[-1])
            break
        else:
            l1 = ll.minus('1' + '0' * index, ll.modd(index))
            # l1 = ll.plus(l1, '1')
            r1 = rr.modd(index, True)
            # print(len(results1), ll.value, rr.value, l1, r1, index)
            ll.mod_rest(index, True)
            rr.mod_rest(index, False)
            results1.append(l1)
            results2.append(r1)

            indexs.append(indexs[-1] << 1)
    # print(results1, results2)
    final = []
    for n, k in enumerate(results1):
        strr = ll.check_zero(k)
        if not strr == '':
            final.append([n, strr])

    for m in range(len(results2) - 1, -1, -1):

        strr = ll.check_zero(results2[m])
        if not strr == '':
            final.append([m, strr])

    print(len(final))

    for ii in range(len(final)):
        print(final[ii][0], final[ii][1])

if __name__ == '__main__':
    main(input(), input())
Copy The Code & Try With Live Editor
Advertisements

Demonstration


Previous
[Solved] Kitty's Calculations on a Tree solution in Hackerrank - Hacerrank solution C, C++, java,js, Python
Next
[Solved] Balanced Forest solution in Hackerrank - Hacerrank solution C, C++, java,js, Python