Algorithm


A. Complicated GCD
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Greatest common divisor GCD(a, b) of two positive integers a and b is equal to the biggest integer d such that both integers a and b are divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a, b), for example, Euclid algorithm.

Formally, find the biggest integer d, such that all integers a, a + 1, a + 2, ..., b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100 — such number do not fit even in 64-bit integer type!

Input

The only line of the input contains two integers a and b (1 ≤ a ≤ b ≤ 10100).

Output

Output one integer — greatest common divisor of all integers from a to b inclusive.

Examples
input
Copy
1 2
output
Copy
1
input
Copy
61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
output
Copy
61803398874989484820458683436563811772030917980576

 



 

Code Examples

#1 Code Example with C++ Programming

Code - C++ Programming

#include <iostream>
#include <string>

using namespace std;

int main() {
  string s1, s2;
  cin >> s1 >> s2;
  
  if(s1 == s2)
    cout << s1 << endl;
  else
    cout << 1 << endl;
  
  return 0;
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
1 2

Output

x
+
cmd
1
Advertisements

Demonstration


Codeforces Solution-Complicated GCD-Solution in C, C++, Java, Python

Previous
Codeforces solution 1080-B-B. Margarite and the best present codeforces solution
Next
CodeChef solution DETSCORE - Determine the Score CodeChef solution C,C+