Algorithm


D. The Wu
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Childan is making up a legendary story and trying to sell his forgery — a necklace with a strong sense of "Wu" to the Kasouras. But Mr. Kasoura is challenging the truth of Childan's story. So he is going to ask a few questions about Childan's so-called "personal treasure" necklace.

This "personal treasure" is a multiset S of m "01-strings".

A "01-string" is a string that contains n characters "0" and "1". For example, if n=4�=4, strings "0110", "0000", and "1110" are "01-strings", but "00110" (there are 55 characters, not 44) and "zero" (unallowed characters) are not.

Note that the multiset S can contain equal elements.

Frequently, Mr. Kasoura will provide a "01-stringt and ask Childan how many strings s are in the multiset S such that the "Wu" value of the pair (s,t)(�,�) is not greater than k.

Mrs. Kasoura and Mr. Kasoura think that if si=ti��=�� (1in1≤�≤�) then the "Wu" value of the character pair equals to wi��, otherwise 00. The "Wu" value of the "01-string" pair is the sum of the "Wu" values of every character pair. Note that the length of every "01-string" is equal to n.

For example, if w=[4,5,3,6]�=[4,5,3,6], "Wu" of ("1001", "1100") is 77 because these strings have equal characters only on the first and third positions, so w1+w3=4+3=7�1+�3=4+3=7.

You need to help Childan to answer Mr. Kasoura's queries. That is to find the number of strings in the multiset S such that the "Wu" value of the pair is not greater than k.

Input

The first line contains three integers nm, and q (1n121≤�≤121q,m51051≤�,�≤5⋅105) — the length of the "01-strings", the size of the multiset S, and the number of queries.

The second line contains n integers w1,w2,,wn�1,�2,…,�� (0wi1000≤��≤100) — the value of the i-th caracter.

Each of the next m lines contains the "01-strings of length n — the string in the multiset S.

Each of the next q lines contains the "01-stringt of length n and integer k (0k1000≤�≤100) — the query.

Output

For each query, print the answer for this query.

Examples
input
Copy
2 4 5
40 20
01
01
10
11
00 20
00 40
11 20
11 40
11 60
output
Copy
2
4
2
3
4
input
Copy
1 2 4
100
0
1
0 0
0 100
1 0
1 100
output
Copy
1
2
1
2
Note

In the first example, we can get:

"Wu" of ("01", "00") is 4040.

"Wu" of ("10", "00") is 2020.

"Wu" of ("11", "00") is 00.

"Wu" of ("01", "11") is 2020.

"Wu" of ("10", "11") is 4040.

"Wu" of ("11", "11") is 6060.

In the first query, pairs ("11", "00") and ("10", "00") satisfy the condition since their "Wu" is not greater than 2020.

In the second query, all strings satisfy the condition.

In the third query, pairs ("01", "11") and ("01", "11") satisfy the condition. Note that since there are two "01" strings in the multiset, the answer is 22, not 11.

In the fourth query, since k was increased, pair ("10", "11") satisfies the condition too.

In the fifth query, since k was increased, pair ("11", "11") satisfies the condition too.

 

Code Examples

#1 Code Example with C++ Programming

Code - C++ Programming

#include <bits/stdc++.h>

using namespace std;

int const N = 12;
char s[13];
int n, m, q, k, a[N], c[1 << N], fr[1 << N], all[1 << N][1201];

int main() {
  scanf("%d %d %d", &n, &m, &q);
  for(int i = 0; i < n; ++i)
    scanf("%d", a + i);
  for(int i = 0, tmp; i < m; ++i) {
    scanf("%s", s);
    tmp = 0;
    for(int j = 0; j < n; ++j)
      tmp |= ((s[j] - '0') << (n - j - 1));
    ++fr[tmp];
  }

  for(int i = 0; i < (1 << n); ++i)
    for(int j = 0; j < n; ++j)
      if(((i >> j) & 1) != 0)
        c[i] += a[n - j - 1];

  for(int i = 0; i < (1 << n); ++i)
    for(int j = 0, x; j < (1 << n); ++j) {
      x = 0;
      for(int l = 0; l < n; ++l)
        if(((i >> l) & 1) == ((j >> l) & 1))
          x |= (1 << l);

      all[i][c[x]] += fr[j];
    }

  for(int i = 0; i < (1 << n); ++i)
    for(int j = 1; j < 1201; ++j)
      all[i][j] += all[i][j - 1];

  for(int i = 0, cur; i < q; ++i) {
    scanf("%s %d", s, &k);
    cur = 0;
    for(int j = 0; j < n; ++j)
      cur |= ((s[j] - '0') << (n - j - 1));
    printf("%d\n", all[cur][k]);
  }

  return 0;
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
2 4 5
40 20
01
01
10
11
00 20
00 40
11 20
11 40
11 60

Output

x
+
cmd
2
4
2
3
4
Advertisements

Demonstration


Codeforces Solution-The Wu-Solution in C, C++, Java, Python,The Wu,Codeforces Solution

Previous
Codeforces solution 1080-B-B. Margarite and the best present codeforces solution
Next
CodeChef solution DETSCORE - Determine the Score CodeChef solution C,C+