## Algorithm

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp analyzes the prices of the new berPhone. At his disposal are the prices for n last days: a1,a2,,an�1,�2,…,��, where ai�� is the price of berPhone on the day i.

Polycarp considers the price on the day i to be bad if later (that is, a day with a greater number) berPhone was sold at a lower price. For example, if n=6�=6 and a=[3,9,4,6,7,5]�=[3,9,4,6,7,5], then the number of days with a bad price is 33 — these are days 22 (a2=9�2=9), 44 (a4=6�4=6) and 55 (a5=7�5=7).

Print the number of days with a bad price.

You have to answer t independent data sets.

Input

The first line contains an integer t (1t100001≤�≤10000) — the number of sets of input data in the test. Input data sets must be processed independently, one after another.

Each input data set consists of two lines. The first line contains an integer n (1n1500001≤�≤150000) — the number of days. The second line contains n integers a1,a2,,an�1,�2,…,�� (1ai1061≤��≤106), where ai�� is the price on the i-th day.

It is guaranteed that the sum of n over all data sets in the test does not exceed 150000150000.

Output

Print t integers, the j-th of which should be equal to the number of days with a bad price in the j-th input data set.

Example
input
Copy
5
6
3 9 4 6 7 5
1
1000000
2
2 1
10
31 41 59 26 53 58 97 93 23 84
7
3 2 1 2 3 4 5

output
Copy
3
0
1
8
2

## Code Examples

### #1 Code Example with C++ Programming

Code - C++ Programming

#include <bits/stdc++.h>

using namespace std;

int const N = 1e6 + 1;
int t, n, a[N], mn, res;

int main() {
#ifndef ONLINE_JUDGE
freopen("in", "r", stdin);
#endif

scanf("%d", &t);
while(t-- != 0) {
mn = 1e9;
res = 0;

scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%d", a + i);

for(int i = n - 1; i >= 0; --i) {
if(a[i] > mn)
++res;
mn = min(mn, a[i]);
}

printf("%d\n", res);
}

return 0;
}
Copy The Code &

Input

cmd
5
6
3 9 4 6 7 5
1
1000000
2
2 1
10
31 41 59 26 53 58 97 93 23 84
7
3 2 1 2 3 4 5

Output

cmd
3
0
1
8
2