## Algorithm

A. Combination Lock
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.

The combination lock is represented by n rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?

Input

The first line contains a single integer n (1 ≤ n ≤ 1000) — the number of disks on the combination lock.

The second line contains a string of n digits — the original state of the disks.

The third line contains a string of n digits — Scrooge McDuck's combination that opens the lock.

Output

Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.

Examples
input
Copy
`58219564723`
output
Copy
`13`
Note

In the sample he needs 13 moves:

• 1 disk:
• 2 disk:
• 3 disk:
• 4 disk:
• 5 disk:

## Code Examples

### #1 Code Example with C++ Programming

```Code - C++ Programming```

``````#include<bits/stdc++.h>
using namespace std;

#define ll long long
#define endl '\n'
#define debug(n) cout<<(n)<<endl;
const ll INF = 2e18 + 99;

int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);

int n;
cin>>n;
string s, t;
cin>>s>>t;
int count = 0;
for(int i = 0; i < n; i++){
int a = s[i] - '0';
int b = t[i] - '0';
int g = min(a, b);
int h = max(a, b);
int c = min(h - g, (g + 10 - h));
count += c;
}
cout<<count<<endl;

}``````
Copy The Code &

Input

cmd
5
82195
64723

Output

cmd
13