Algorithm
Problem Name: 1020. Number of Enclaves
You are given an m x n
binary matrix grid
, where 0
represents a sea cell and 1
represents a land cell.
A move consists of walking from one land cell to another adjacent (4-directionally) land cell or walking off the boundary of the grid
.
Return the number of land cells in grid
for which we cannot walk off the boundary of the grid in any number of moves.
Example 1:
Input: grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]] Output: 3 Explanation: There are three 1s that are enclosed by 0s, and one 1 that is not enclosed because its on the boundary.
Example 2:
Input: grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]] Output: 0 Explanation: All 1s are either on the boundary or can reach the boundary.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 500
grid[i][j]
is either0
or1
.
Code Examples
#1 Code Example with Java Programming
Code -
Java Programming
class Solution {
private static final int[][] DIRS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int numEnclaves(int[][] grid) {
Queue < int[]> queue = new LinkedList<>();
int result = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
result += grid[i][j];
if (i * j == 0 || i == grid.length - 1 || j == grid[i].length - 1) {
queue.add(new int[]{i, j});
}
}
}
while (!queue.isEmpty()) {
int[] removed = queue.remove();
int x = removed[0];
int y = removed[1];
if (x < 0 || y < 0 || x == grid.length || y == grid[0].length || grid[x][y] != 1) {
continue;
}
grid[x][y] = 0;
result--;
for (int[] dir : DIRS) {
queue.add(new int[]{x + dir[0], y + dir[1]});
}
}
return result;
}
}
Copy The Code &
Try With Live Editor
Input
Output
#2 Code Example with Javascript Programming
Code -
Javascript Programming
const numEnclaves = function(A) {
let res = 0
const dirs = [[-1, 0], [1, 0], [0, 1], [0, -1]]
const visited = Array.from({ length: A.length }, () =>
new Array(A[0].length).fill(false)
)
for (let row = 0; row < A.length; row++) {
for (let col = 0; A[0] && col < A[0].length; col++) {
if (
(row === 0 ||
col === 0 ||
row === A.length - 1 ||
col === A[0].length - 1) &&
A[row][col] === 1
) {
dfs(A, row, col, visited, dirs)
}
}
}
for (let row = 0; row < A.length; row++) {
for (let col = 0; A[0] && col < A[0].length; col++) {
if (A[row][col] === 1) {
res += 1
}
}
}
return res
}
function dfs(A, row, col, v, dirs) {
if (
row < 0 ||
row >= A.length ||
col < 0 ||
col >= A[0].length ||
v[row][col] ||
A[row][col] === 0
)
return
v[row][col] = true
A[row][col] = 0
for (let dir of dirs) {
dfs(A, row + dir[0], col + dir[1], v, dirs)
}
}
Copy The Code &
Try With Live Editor
Input
Output
#3 Code Example with Python Programming
Code -
Python Programming
class Solution:
def numEnclaves(self, A: List[List[int]]) -> int:
def dfs(i, j):
A[i][j] = 0
for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1):
if 0 <= x < m and 0 <= y < n and A[x][y]:
dfs(x, y)
m, n = len(A), len(A[0])
for i in range(m):
for j in range(n):
if A[i][j] == 1 and (i == 0 or j == 0 or i == m - 1 or j == n - 1):
dfs(i, j)
return sum(sum(row) for row in A)
Copy The Code &
Try With Live Editor
Input