Algorithm


Problem Name: 688. Knight Probability in Chessboard

On an n x n chessboard, a knight starts at the cell (row, column) and attempts to make exactly k moves. The rows and columns are 0-indexed, so the top-left cell is (0, 0), and the bottom-right cell is (n - 1, n - 1).

A chess knight has eight possible moves it can make, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly k moves or has moved off the chessboard.

Return the probability that the knight remains on the board after it has stopped moving.

 

Example 1:

Input: n = 3, k = 2, row = 0, column = 0
Output: 0.06250
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

Example 2:

Input: n = 1, k = 0, row = 0, column = 0
Output: 1.00000

 

Constraints:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n - 1

Code Examples

#1 Code Example with C++ Programming

Code - C++ Programming


class Solution {
private:
    unordered_map<int, unordered_map<int, unordered_map<int, double>>>dp;
public:
    double knightProbability(int N, int K, int r, int c) {
        if(dp.count(r) && dp[r].count(c) && dp[r][c].count(K)) return dp[r][c][K];
        if(r  <  0 || r >= N || c < 0 || c >= N) return 0;
        if(K == 0) return 1;
        double total = knightProbability(N, K - 1, r - 1, c - 2) + knightProbability(N, K - 1, r - 2, c - 1) 
                     + knightProbability(N, K - 1, r - 1, c + 2) + knightProbability(N, K - 1, r - 2, c + 1) 
                     + knightProbability(N, K - 1, r + 1, c + 2) + knightProbability(N, K - 1, r + 2, c + 1) 
                     + knightProbability(N, K - 1, r + 1, c - 2) + knightProbability(N, K - 1, r + 2, c - 1);
        double res = total / 8;
        dp[r][c][K] = res;
        return res;
    }
};
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 3, k = 2, row = 0, column = 0

Output

x
+
cmd
0.06250

#2 Code Example with Java Programming

Code - Java Programming


class Solution {
  public double knightProbability(int N, int K, int r, int c) {
    double[][] dp = new double[N][N];
    int[] rowMoves = new int[]{2, 2, 1, 1, -1, -1, -2, -2};
    int[] colMoves = new int[]{1, -1, 2, -2, 2, -2, 1, -1};
    dp[r][c] = 1;
    while (K-- >  0) {
      double[][] copy = new double[N][N];
      for (int i = 0; i  <  N; i++) {
        for (int j = 0; j  <  N; j++) {
          for (int k = 0; k  <  8; k++) {
            int destR = i + rowMoves[k];
            int destC = j + colMoves[k];
            if (destR >= 0 && destR  <  N && destC >= 0 && destC < N) {
              copy[destR][destC] += dp[i][j] / 8.0;
            }
          }
        }
      }
      dp = copy;
    }
    double ans = 0.0;
    for (double[] row : dp) {
      for (double val : row) {
        ans += val;
      }
    }
    return ans;
  }
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 3, k = 2, row = 0, column = 0

Output

x
+
cmd
0.06250

#3 Code Example with Javascript Programming

Code - Javascript Programming


const knightProbability = function (N, K, r, c) {
  const moves = [
    [1, 2],
    [1, -2],
    [2, 1],
    [2, -1],
    [-1, 2],
    [-1, -2],
    [-2, 1],
    [-2, -1],
  ]
  const dp = [...Array(K + 1)].map(() =>
    [...Array(N)].map(() => Array(N).fill(0))
  )
  dp[0][r][c] = 1
  for (let step = 1; step  < = K; step++) {
    for (let i = 0; i  <  N; i++) {
      for (let j = 0; j  <  N; j++) {
        for (let move of moves) {
          let row = i + move[0],
            col = j + move[1]
          if (row >= 0 && row < N && col >= 0 && col < N)
            dp[step][i][j] += dp[step - 1][row][col] / 8
        }
      }
    }
  }
  let res = 0
  for (let i = 0; i  <  N; i++) {
    for (let j = 0; j  <  N; j++) {
      res += dp[K][i][j]
    }
  }
  return res
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 1, k = 0, row = 0, column = 0

Output

x
+
cmd
1.00000

#4 Code Example with Python Programming

Code - Python Programming


class Solution:
    def knightProbability(self, N, K, r, c):
        memo = {}
        def dfs(i, j, p, k): 
            if 0 <= i < N and 0 <= j < N and k < K:
                sm = 0
                for x, y in ((-1, -2), (-2, -1), (-2, 1), (-1, 2), (1, 2), (2, 1), (2, -1), (1, -2)):
                    if (i + x, j + y, k) not in memo:
                        memo[(i + x, j + y, k)] = dfs(i + x, j + y, p / 8, k + 1)
                    sm += memo[(i + x, j + y, k)]
                return sm
            else:
                return 0 <= i < N and 0 <= j < N and p or 0
        return dfs(r, c, 1, 0)
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 1, k = 0, row = 0, column = 0

Output

x
+
cmd
1.00000
Advertisements

Demonstration


Previous
#687 Leetcode Longest Univalue Path Solution in C, C++, Java, JavaScript, Python, C# Leetcode
Next
#689 Leetcode Maximum Sum of 3 Non-Overlapping Subarrays Solution in C, C++, Java, JavaScript, Python, C# Leetcode