Algorithm
Problem Name: 782. Transform to Chessboard
You are given an n x n
binary grid board
. In each move, you can swap any two rows with each other, or any two columns with each other.
Return the minimum number of moves to transform the board into a chessboard board. If the task is impossible, return -1
.
A chessboard board is a board where no 0
's and no 1
's are 4-directionally adjacent.
Example 1:
Input: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]] Output: 2 Explanation: One potential sequence of moves is shown. The first move swaps the first and second column. The second move swaps the second and third row.
Example 2:
Input: board = [[0,1],[1,0]] Output: 0 Explanation: Also note that the board with 0 in the top left corner, is also a valid chessboard.
Example 3:
Input: board = [[1,0],[1,0]] Output: -1 Explanation: No matter what sequence of moves you make, you cannot end with a valid chessboard.
Constraints:
n == board.length
n == board[i].length
2 <= n <= 30
board[i][j]
is either0
or1
.
Code Examples
#1 Code Example with Javascript Programming
Code -
Javascript Programming
const movesToChessboard = function (b) {
let N = b.length,
rowSum = 0,
colSum = 0,
rowSwap = 0,
colSwap = 0;
for (let i = 0; i < N; ++i)
for (let j = 0; j < N; ++j)
if ((b[0][0] ^ b[i][0] ^ b[0][j] ^ b[i][j]) === 1) return -1;
for (let i = 0; i < N; ++i) {
rowSum += b[0][i];
colSum += b[i][0];
if (b[i][0] === i % 2) rowSwap++;
if (b[0][i] === i % 2) colSwap++;
}
if (rowSum !== ((N / 2) >> 0) && rowSum !== ((N + 1) / 2)>>0 ) return -1;
if (colSum !== ((N / 2) >> 0) && colSum !== ((N + 1) / 2)>>0 ) return -1;
if (N % 2 === 1) {
if (colSwap % 2 === 1) colSwap = N - colSwap;
if (rowSwap % 2 === 1) rowSwap = N - rowSwap;
} else {
colSwap = Math.min(N - colSwap, colSwap);
rowSwap = Math.min(N - rowSwap, rowSwap);
}
return (colSwap + rowSwap) / 2;
};
Copy The Code &
Try With Live Editor
Input
Output
#2 Code Example with Python Programming
Code -
Python Programming
class Solution:
def movesToChessboard(self, b):
N = len(b)
if any(b[0][0] ^ b[i][0] ^ b[0][j] ^ b[i][j] for i in range(N) for j in range(N)): return -1
if not N // 2 <= sum(b[0]) <= (N + 1) // 2: return -1
if not N // 2 <= sum(b[i][0] for i in range(N)) <= (N + 1) // 2: return -1
col = sum(b[0][i] == i % 2 for i in range(N))
row = sum(b[i][0] == i % 2 for i in range(N))
if N % 2:
if col % 2: col = [col, N - col][col % 2]
if row % 2: row = N - row
else:
col = min(N - col, col)
row = min(N - row, row)
return (col + row) // 2
Copy The Code &
Try With Live Editor
Input
Output