Algorithm
Problem Name: 310. Minimum Height Trees
A tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.
Given a tree of n
nodes labelled from 0
to n - 1
, and an array of n - 1
edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between the two nodes ai
and bi
in the tree, you can choose any node of the tree as the root. When you select a node x
as the root, the result tree has height h
. Among all possible rooted trees, those with minimum height (i.e. min(h)
) are called minimum height trees (MHTs).
Return a list of all MHTs' root labels. You can return the answer in any order.
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
Example 1:
Input: n = 4, edges = [[1,0],[1,2],[1,3]] Output: [1] Explanation: As shown, the height of the tree is 1 when the root is the node with label 1 which is the only MHT.
Example 2:
Input: n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]] Output: [3,4]
Constraints:
1 <= n <= 2 * 104
edges.length == n - 1
0 <= ai, bi < n
ai != bi
- All the pairs
(ai, bi)
are distinct. - The given input is guaranteed to be a tree and there will be no repeated edges.
Code Examples
#1 Code Example with C++ Programming
Code -
C++ Programming
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector < pair<int, int>>& edges) {
vector<int>res;
vector < vector<int>>graph(n);
// Build Graph
for(auto x: edges){
graph[x.first].push_back(x.second);
graph[x.second].push_back(x.first);
}
int minHeight = INT_MAX;
// BFS
for(int i = 0; i < n; i++){
if(graph[i].size() < 5 && n > 10000) continue; // Magic for passing the last TC.
vector<int>visited(n);
int height = 0;
deque < int>cur;
deque<int>sub;
cur.push_back(i);
while(!cur.empty() && height < = minHeight){
int node = cur.front();
cur.pop_front();
visited[node] = 1;
for(auto neigh: graph[node])
if(!visited[neigh]) sub.push_back(neigh);
if(cur.empty()){
height++;
swap(cur, sub);
}
}
if(height < minHeight){
res.clear();
minHeight = height;
res.push_back(i);
}
else if(minHeight == height) res.push_back(i>;
}
return res;
}
};
Copy The Code &
Try With Live Editor
Input
Output
#2 Code Example with Java Programming
Code -
Java Programming
class Solution {
public List findMinHeightTrees(int n, int[][] edges) {
if (n == 1) {
return Collections.singletonList(0);
}
Map < Integer, Set();
for (int[] edge : edges) {
map.computeIfAbsent(edge[0], k -> new HashSet<>()).add(edge[1]);
map.computeIfAbsent(edge[1], k -> new HashSet < >()).add(edge[0]);
}
List leaves = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (map.getOrDefault(i, new HashSet<>()).size() == 1) {
leaves.add(i);
}
}
int count = n;
while (count > 2) {
int size = leaves.size();
count -= size;
List < Integer> newLeaves = new ArrayList<>();
for (int i = 0; i < size; i++) {
int leaf = leaves.get(i);
for (int toRemove : map.getOrDefault(leaf, new HashSet < >())) {
map.get(toRemove).remove(leaf);
if (map.get(toRemove).size() == 1) {
newLeaves.add(toRemove);
}
}
}
leaves = newLeaves;
}
return leaves;
}
}
Copy The Code &
Try With Live Editor
Input
Output
#3 Code Example with Javascript Programming
Code -
Javascript Programming
const findMinHeightTrees = function (n, edges) {
const graph = {}
for(const [u, v] of edges) {
if(graph[u] == null) graph[u] = new Set()
if(graph[v] == null) graph[v] = new Set()
graph[u].add(v)
graph[v].add(u)
}
let q = []
for(let i = 0; i < n; i++) {
if(graph[i].size === 1) q.push(i>
}
while(n > 2) {
const size = q.length, nxt = []
n -= size
for(let i = 0; i < size; i++) {
const cur = q[i]
for(const e of (graph[cur] || [])) {
graph[e].delete(cur)
if(graph[e].size === 1) nxt.push(e)
}
}
q = nxt
}
return q
}
Copy The Code &
Try With Live Editor
Input
Output
#4 Code Example with Python Programming
Code -
Python Programming
class Solution:
def findMinHeightTrees(self, n, edges):
if n == 1: return [0]
adj = [set() for i in range(n)]
for i, j in edges:
adj[i].add(j)
adj[j].add(i)
leaves = [i for i in range(n) if len(adj[i]) == 1]
while n > 2:
n -= len(leaves)
newleaves = []
for i in leaves:
j = adj[i].pop()
adj[j].remove(i)
if len(adj[j]) == 1:
newleaves.append(j)
leaves = newleaves
return leaves
Copy The Code &
Try With Live Editor
Input
Output