Algorithm


Problem Name: 851. Loud and Rich

There is a group of n people labeled from 0 to n - 1 where each person has a different amount of money and a different level of quietness.

You are given an array richer where richer[i] = [ai, bi] indicates that ai has more money than bi and an integer array quiet where quiet[i] is the quietness of the ith person. All the given data in richer are logically correct (i.e., the data will not lead you to a situation where x is richer than y and y is richer than x at the same time).

Return an integer array answer where answer[x] = y if y is the least quiet person (that is, the person y with the smallest value of quiet[y]) among all people who definitely have equal to or more money than the person x.

 

Example 1:

Input: richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
Output: [5,5,2,5,4,5,6,7]
Explanation: 
answer[0] = 5.
Person 5 has more money than 3, which has more money than 1, which has more money than 0.
The only person who is quieter (has lower quiet[x]) is person 7, but it is not clear if they have more money than person 0.
answer[7] = 7.
Among all people that definitely have equal to or more money than person 7 (which could be persons 3, 4, 5, 6, or 7), the person who is the quietest (has lower quiet[x]) is person 7.
The other answers can be filled out with similar reasoning.

Example 2:

Input: richer = [], quiet = [0]
Output: [0]

 

Constraints:

  • n == quiet.length
  • 1 <= n <= 500
  • 0 <= quiet[i] < n
  • All the values of quiet are unique.
  • 0 <= richer.length <= n * (n - 1) / 2
  • 0 <= ai, bi < n
  • ai != bi
  • All the pairs of richer are unique.
  • The observations in richer are all logically consistent.

Code Examples

#1 Code Example with Python Programming

Code - Python Programming


class Solution:
    def loudAndRich(self, richer, quiet):
        edges, memo, res = collections.defaultdict(list), {}, [i for i in range(len(quiet))]
        for r, p in richer: edges[p].append(r)
        def explore(i):
            if i in memo: return memo[i]
            cur_min = i
            for v in edges[i]:
                cur = explore(v)
                if quiet[cur] < quiet[cur_min]: cur_min = cur
            res[i] = memo[i] = cur_min
            return cur_min
        for i in range(len(quiet)): explore(i)
        return res
Copy The Code & Try With Live Editor

Input

x
+
cmd
richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]

Output

x
+
cmd
[5,5,2,5,4,5,6,7]
Advertisements

Demonstration


Previous
#850 Leetcode Rectangle Area II Solution in C, C++, Java, JavaScript, Python, C# Leetcode
Next
#852 Leetcode Peak Index in a Mountain Array Solution in C++, Python, C# Leetcode