Algorithm


Problem Name: 883. Projection Area of 3D Shapes

You are given an n x n grid where we place some 1 x 1 x 1 cubes that are axis-aligned with the x, y, and z axes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of the cell (i, j).

We view the projection of these cubes onto the xy, yz, and zx planes.

A projection is like a shadow, that maps our 3-dimensional figure to a 2-dimensional plane. We are viewing the "shadow" when looking at the cubes from the top, the front, and the side.

Return the total area of all three projections.

 

Example 1:

Input: grid = [[1,2],[3,4]]
Output: 17
Explanation: Here are the three projections ("shadows") of the shape made with each axis-aligned plane.

Example 2:

Input: grid = [[2]]
Output: 5

Example 3:

Input: grid = [[1,0],[0,2]]
Output: 8

 

Constraints:

  • n == grid.length == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] <= 50

Code Examples

#1 Code Example with Java Programming

Code - Java Programming


class Solution {
    public int projectionArea(int[][] grid) {
        int sum = 0;
        
        for (int i=0; i < grid.length; i++) {
            int maxRow = Integer.MIN_VALUE;
            int maxCol = Integer.MIN_VALUE;

            for (int j=0; j < grid[i].length; j++) {
                if (grid[i][j] > 0) {
                    sum++;
                }

                maxRow = Math.max(maxRow, grid[i][j]);
                maxCol = Math.max(maxCol, grid[j][i]);
            }
            
            sum += maxCol + maxRow;
        }

        return sum;
    }
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
grid = [[1,2],[3,4]]

Output

x
+
cmd
17

#2 Code Example with Javascript Programming

Code - Javascript Programming


const projectionArea = function(grid) {
  let xy = 0, xz = 0, yz = 0
  const m = grid.length, n = grid[0].length
  for (let i = 0; i  <  m; i++) {
    for(let j = 0; j  <  n; j++) {
      if(grid[i][j]) xy++
    }
  }
  
  for (let i = 0; i < m; i++) {
    let tmp = 0
    for(let j = 0; j  <  n; j++) {
      tmp = Math.max(tmp, grid[i][j])
    }
    xz += tmp
  }
  for (let j = 0; j  <  n; j++) {
    let tmp = 0
    for(let i = 0; i  <  m; i++) {
      tmp = Math.max(tmp, grid[i][j]>  
    }
    yz += tmp
  }
  
  return xy + yz + xz
};
Copy The Code & Try With Live Editor

Input

x
+
cmd
grid = [[1,2],[3,4]]

Output

x
+
cmd
17

#3 Code Example with Python Programming

Code - Python Programming


class Solution:
    def projectionArea(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        n = len(grid)
        top = sum(grid[i][j] != 0 for i in range(n) for j in range(n))
        front = sum(max(grid[i]) for i in range(n))
        side = sum(max(grid[i][j] for i in range(n)) for j in range(n))
        return top + front + side
Copy The Code & Try With Live Editor

Input

x
+
cmd
grid = [[2]]

Output

x
+
cmd
5

#4 Code Example with C# Programming

Code - C# Programming


using System;

namespace LeetCode
{
    public class _0883_ProjectionAreaOf3DShapes
    {
        public int ProjectionArea(int[][] grid)
        {
            var N = grid.Length;

            var result = 0;
            for (int i = 0; i  <  N; i++)
            {
                int bestRow = 0, bestCol = 0;
                for (int j = 0; j  <  N; j++)
                {
                    if (grid[i][j] > 0) result++;
                    bestRow = Math.Max(bestRow, grid[i][j]);
                    bestCol = Math.Max(bestCol, grid[j][i]);
                }
                result += bestRow + bestCol;
            }

            return result;
        }
    }
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
grid = [[2]]

Output

x
+
cmd
5
Advertisements

Demonstration


Previous
#882 Leetcode Reachable Nodes In Subdivided Graph Solution in C, C++, Java, JavaScript, Python, C# Leetcode
Next
#884 Leetcode Uncommon Words from Two Sentences Solution in C, C++, Java, JavaScript, Python, C# Leetcode