Algorithm
Problem Name: 546. Remove Boxes
You are given several boxes
with different colors represented by different positive numbers.
You may experience several rounds to remove boxes until there is no box left. Each time you can choose some continuous boxes with the same color (i.e., composed of k
boxes, k >= 1
), remove them and get k * k
points.
Return the maximum points you can get.
Example 1:
Input: boxes = [1,3,2,2,2,3,4,3,1] Output: 23 Explanation: [1, 3, 2, 2, 2, 3, 4, 3, 1] ----> [1, 3, 3, 4, 3, 1] (3*3=9 points) ----> [1, 3, 3, 3, 1] (1*1=1 points) ----> [1, 1] (3*3=9 points) ----> [] (2*2=4 points)
Example 2:
Input: boxes = [1,1,1] Output: 9
Example 3:
Input: boxes = [1] Output: 1
Constraints:
1 <= boxes.length <= 100
1 <= boxes[i] <= 100
Code Examples
#1 Code Example with Javascript Programming
Code -
Javascript Programming
const removeBoxes = function(boxes) {
const n = boxes.length
const dp = Array.from(new Array(n), () => {
return Array.from(new Array(n), () => {
return new Array(n).fill(0)
})
})
return removeBoxesSub(boxes, 0, n - 1, 0, dp)
};
function removeBoxesSub(boxes, i, j, k, dp) {
if(i > j) return 0;
if(dp[i][j][k] > 0) return dp[i][j][k]
for(; i + 1 <= j && boxes[i+1] === boxes[i] ; i++, k++) {
// optimization: all boxes of the same color counted continuously from the first box should be grouped together
}
let res = (k+1) * (k+1) + removeBoxesSub(boxes, i + 1, j, 0, dp)
for(let m = i + 1; m < = j; m++) {
if(boxes[i] === boxes[m]) {
res = Math.max(res, removeBoxesSub(boxes, i + 1, m - 1, 0, dp) + removeBoxesSub(boxes, m, j, k + 1, dp) >
}
}
dp[i][j][k] = res
return res
}
Copy The Code &
Try With Live Editor
Input
Output
#2 Code Example with Python Programming
Code -
Python Programming
class Solution:
def removeBoxes(self, A):
n = len(A)
memo = [[[0] * n for _ in range(n) ] for _ in range(n)]
def dp(i, j, k):
if i > j: return 0
if not memo[i][j][k]:
m = i
while m+1 <= j and A[m+1] == A[i]:
m += 1
i, k = m, k + m - i
ans = dp(i+1, j, 0) + (k+1) ** 2
for m in range(i+1, j+1):
if A[i] == A[m]:
ans = max(ans, dp(i+1, m-1, 0) + dp(m, j, k+1))
memo[i][j][k] = ans
return memo[i][j][k]
return dp(0, n-1, 0)
Copy The Code &
Try With Live Editor
Input
Output