Algorithm
Problem Name: 523. Continuous Subarray Sum
Given an integer array nums and an integer k, return true if nums has a good subarray or false otherwise.
A good subarray is a subarray where:
- its length is at least two, and
- the sum of the elements of the subarray is a multiple of k.
Note that:
- A subarray is a contiguous part of the array.
- An integer xis a multiple ofkif there exists an integernsuch thatx = n * k.0is always a multiple ofk.
Example 1:
Input: nums = [23,2,4,6,7], k = 6 Output: true Explanation: [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
Input: nums = [23,2,6,4,7], k = 6 Output: true Explanation: [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42. 42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
Input: nums = [23,2,6,4,7], k = 13 Output: false
Constraints:
- 1 <= nums.length <= 105
- 0 <= nums[i] <= 109
- 0 <= sum(nums[i]) <= 231 - 1
- 1 <= k <= 231 - 1
Code Examples
#1 Code Example with C Programming
Code -
                                                        C Programming
typedef struct e_s {
    int mod;
    int idx;
    struct e_s *shadow;
} e_t;
#define SZ 1024
e_t *lookup(e_t **set, int mod) {
    e_t *e = set[mod % SZ];
    while (e && e->mod != mod) {
        e = e->shadow;
    }
    return e;
}
void put(e_t **set, e_t *e, int mod, int idx) {
    e->mod = mod;
    e->idx = idx;
    e->shadow = set[mod % SZ];
    set[mod % SZ] = e;
}
bool checkSubarraySum(int* nums, int numsSize, int k) {
    int i, s, found = 0;
    
    e_t buff[10000];
    int n;
    
    e_t *set[SZ] = { 0 }, *e;
    
    put(set, &buff[n ++], 0, -1);
    
    s = 0;
    for (i = 0; i  <  numsSize; i ++) {
        s += nums[i];
        if (k) s = s % k;
        e = lookup(set, s);
        if (e) {
            if (i - e->idx >= 2) {
                found = 1;
                break;
            }
        } else {
            put(set, &buff[n ++], s, i);
        }
    }
    
    return found;
}
Input
Output
#2 Code Example with C++ Programming
Code -
                                                        C++ Programming
class Solution {
public:
    bool checkSubarraySum(vector<int>& nums, int k) {
        unordered_map < int, int>m;
        k = abs(k);
        int sum = 0;
        for(int i = 0; i  <  nums.size(); i++){
            sum += nums[i];
            if(i < nums.size() - 1 && nums[i] == 0 && nums[i + 1] == 0> return true;
            if(k != 0 && sum % k == 0 && i > 0) return true;
            for(int j = 0; k != 0 && j*k < sum; j++)
                if(m.count(sum - j*k> > 0 && i - m[sum - j*k] > 0) return true;
            m[sum] = i;
        }
        return false;
    }
};
Input
Output
#3 Code Example with Java Programming
Code -
                                                        Java Programming
class Solution {
  public boolean checkSubarraySum(int[] nums, int k) {
    Map map = new HashMap<>();
    map.put(0, -1);
    int currSum = 0;
    for (int i = 0; i  <  nums.length; i++) {
      currSum += nums[i];
      int rem = currSum % k;
      if (map.containsKey(rem)) {
        if (i - map.get(rem) >= 2) {
          return true;
        }
      } else {
        map.put(rem, i);
      }
    }
    return false;
  }
}
 Input
Output
#4 Code Example with Javascript Programming
Code -
                                                        Javascript Programming
const checkSubarraySum = function(nums, k) {
    const map = {0: -1}
    let runningSum = 0
    for(let i = 0; i  <  nums.length; i++) {
      runningSum += nums[i]
      if(k !== 0) runningSum %= k
      let prev = map[runningSum]
      if(prev != null) {
         if(i - prev > 1) return true
      } else {
        map[runningSum] = i
      }
    }
    return false
};
Input
Output
#5 Code Example with Python Programming
Code -
                                                        Python Programming
class Solution:
    def checkSubarraySum(self, nums, k):
        if not k: return any(nums[i] == nums[i - 1] == 0 for i in range(1, len(nums)))
        mods, sm = set(), 0
        for i, num in enumerate(nums):
            sm = (sm + num) % k
            if (sm in mods and num or (i and not nums[i - 1])) or (not sm and i): return True
            mods |= {sm}
        return False
Input
Output
#6 Code Example with C# Programming
Code -
                                                        C# Programming
using System.Collections.Generic;
namespace LeetCode
{
    public class _0523_ContinuousSubarraySum
    {
        public bool CheckSubarraySum(int[] nums, int k)
        {
            var map = new Dictionary < int, int>();
            map.Add(0, -1);
            var sum = 0;
            for (int i = 0; i  <  nums.Length; i++)
            {
                sum += nums[i];
                if (k != 0)
                    sum %= k;
                if (map.ContainsKey(sum))
                {
                    if (i - map[sum] >= 2)
                        return true;
                }
                else
                    map[sum] = i;
            }
            return false;
        }
    }
}
Input
Output
