Algorithm


Problem Name: 1203. Sort Items by Groups Respecting Dependencies

There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it's equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.

Return a sorted list of the items such that:

  • The items that belong to the same group are next to each other in the sorted list.
  • There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item).

Return any solution if there is more than one solution and return an empty list if there is no solution.

 

Example 1:

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
Output: [6,3,4,1,5,2,0,7]

Example 2:

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
Output: []
Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.

 

Constraints:

  • 1 <= m <= n <= 3 * 104
  • group.length == beforeItems.length == n
  • -1 <= group[i] <= m - 1
  • 0 <= beforeItems[i].length <= n - 1
  • 0 <= beforeItems[i][j] <= n - 1
  • i != beforeItems[i][j]
  • beforeItems[i] does not contain duplicates elements.

Code Examples

#1 Code Example with Javascript Programming

Code - Javascript Programming


const sortItems = function (n, m, group, beforeItems) {
  const graph = Array.from({ length: m + n }, () => [])
  const indegree = Array(n + m).fill(0)
  for (let i = 0; i  <  group.length; i++) {
    if (group[i] == -1) continue
    graph[n + group[i]].push(i)
    indegree[i]++
  }
  for (let i = 0; i  <  beforeItems.length; i++) {
    for (const e of beforeItems[i]) {
      const a = group[e] === -1 ? e : n + group[e]
      const b = group[i] === -1 ? i : n + group[i]
      if (a === b) {
        // same group, ingroup order
        graph[e].push(i)
        indegree[i]++
      } else {
        // outgoup order
        graph[a].push(b)
        indegree[b]++
      }
    }
  }
  const res = []
  for (let i = 0; i  <  n + m; i++) {
    if (indegree[i] === 0) dfs(res, graph, indegree, n, i)
  }
  return res.length === n ? res : []

  function dfs(ans, graph, indegree, n, cur) {
    if (cur < n) ans.push(cur)
    indegree[cur] = -1 // mark it visited
    for (let next of graph[cur] || []) {
      indegree[next]--
      if (indegree[next] === 0) dfs(ans, graph, indegree, n, next)
    }
  }
}
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]

Output

x
+
cmd
[6,3,4,1,5,2,0,7]

#2 Code Example with Python Programming

Code - Python Programming


class Solution:
    def sortItems(self, n: int, m: int, group: List[int], beforeItems: List[List[int]]) -> List[int]:
        def topo_sort(points, pre, suc):
            order = []
            sources = [p for p in points if not pre[p]]
            while sources:
                s = sources.pop()
                order.append(s)
                for u in suc[s]:
                    pre[u].remove(s)
                    if not pre[u]:
                        sources.append(u)
            return order if len(order) == len(points) else []
        
        # find the group of each item
        group2item = collections.defaultdict(set)
        for i in range(n):
            if group[i] == -1:
                group[i] = m
                m += 1
            group2item[group[i]].add(i)
        # find the relationships between the groups and each items in the same group
        t_pre, t_suc = collections.defaultdict(set), collections.defaultdict(set)
        g_pre, g_suc = collections.defaultdict(set), collections.defaultdict(set)
        for i in range(n):
            for j in beforeItems[i]:
                if group[i] == group[j]:
                    t_pre[i].add(j)
                    t_suc[j].add(i)
                else:
                    g_pre[group[i]].add(group[j])
                    g_suc[group[j]].add(group[i])
        # topological sort the groups
        groups_order = topo_sort([i for i in group2item], g_pre, g_suc)
        # topological sort the items in each group
        t_order = []
        for i in groups_order:
            items = group2item[i]
            i_order = topo_sort(items, t_pre, t_suc)
            if len(i_order) != len(items):
                return []
            t_order += i_order
        return t_order if len(t_order) == n else []
Copy The Code & Try With Live Editor

Input

x
+
cmd
n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]

Output

x
+
cmd
[6,3,4,1,5,2,0,7]
Advertisements

Demonstration


Previous
#1202 Leetcode Smallest String With Swaps Solution in C, C++, Java, JavaScript, Python, C# Leetcode
Next
#1206 Leetcode Design Skiplist Solution in C, C++, Java, JavaScript, Python, C# Leetcode