Algorithm
Problem Name: 396. Rotate Function
You are given an integer array nums of length n.
Assume arrk to be an array obtained by rotating nums by k positions clock-wise. We define the rotation function F on nums as follow:
- F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1].
Return the maximum value of F(0), F(1), ..., F(n-1).
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: nums = [4,3,2,6] Output: 26 Explanation: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Example 2:
Input: nums = [100] Output: 0
Constraints:
- n == nums.length
- 1 <= n <= 105
- -100 <= nums[i] <= 100
Code Examples
#1 Code Example with Java Programming
Code -
                                                        Java Programming
class Solution {
    public int maxRotateFunction(int[] A) {
        
        if (A.length == 0) return 0;
        int maxVal = Integer.MIN_VALUE;
        
        int c = 1;
        
        while (c  < = A.length) {
            int temp = 0;
            for (int i=0;i < A.length;i++) {
                temp += i*A[i];
            }
            maxVal = Math.max(maxVal, temp);
            rotateArr(A);
            c++;
        }
        
        return maxVal;
    }
    
    public void rotateArr(int[] arr) {
        int last = arr[arr.length-1];
        for (int i = arr.length-1;i>0;i--) {
            arr[i] = arr[i-1];
        }
        
        arr[0] = last;
    }
}
Input
Output
#2 Code Example with Javascript Programming
Code -
                                                        Javascript Programming
const maxRotateFunction = function(A) {
    if(A.length === 0) return 0;
    let sum = 0, iteration = 0, len = A.length;
    for(let i = 0; i < len; i++){
        sum += A[i];
        iteration += (A[i] * i);
    }
    let max = iteration;
    for(let j = 1; j  <  len; j++){
        // for next iteration lets remove one entry value
        // of each entry and the prev 0 * k
        iteration = iteration - sum + A[j-1]*len;
        max = Math.max(max, iteration>;
    }
    return max;
};
Input
Output
#3 Code Example with Python Programming
Code -
                                                        Python Programming
class Solution:
    def maxRotateFunction(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        mx, sm = 0, sum(A)
        for i in range(len(A)):
            mx += i * A[i]
        curr = mx
        for i in range(1, len(A)):
            curr = curr - sm + A[i - 1] * len(A)
            mx = max(mx, curr)
        return mx
Input
